Question

If $$0 < a < b < c,$$    then $${\cot ^{ - 1}}\left( {\frac{{ab + 1}}{{a - b}}} \right) + {\cot ^{ - 1}}\left( {\frac{{bc + 1}}{{b - c}}} \right) + {\cot ^{ - 1}}\left( {\frac{{ca + 1}}{{c - a}}} \right) = $$

A. $$0$$
B. $$\pi $$
C. $$2\pi $$  
D. None of these
Answer :   $$2\pi $$
Solution :
$$\eqalign{ & \because a - b < 0,{\text{ so}} \cr & {\cot ^{ - 1}}\frac{{ab + 1}}{{a - b}} = {\cot ^{ - 1}}b - {\cot ^{ - 1}}a + \pi \cr & b - c < 0,{\text{ so }}{\cot ^{ - 1}}\frac{{bc + 1}}{{b - c}} = {\cot ^{ - 1}}c - {\cot ^{ - 1}}b + \pi \cr & c - a > 0,{\text{ so }}{\cot ^{ - 1}}\frac{{ca + 1}}{{c - a}} = {\cot ^{ - 1}}a - {\cot ^{ - 1}}c \cr & {\text{Adding we get,}} \cr & {\cot ^{ - 1}}\frac{{ab + 1}}{{a - b}} + {\cot ^{ - 1}}\frac{{bc + 1}}{{b - c}} + {\cot ^{ - 1}}\frac{{ca + 1}}{{c - a}} = 2\pi \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section