Question

Given the line $$L:\frac{{x - 1}}{3} = \frac{{y + 1}}{2} = \frac{{z - 3}}{{ - 1}}$$       and the plane $$\pi \,:x - 2y = z.$$    Of the following assertions, the only one that is always true is :

A. $$L$$ is $$ \bot $$ to $$\pi $$
B. $$L$$ lies in $$\pi $$  
C. $$L$$ is parallel to $$\pi $$
D. None of these
Answer :   $$L$$ lies in $$\pi $$
Solution :
Since $$3\left( 1 \right) + 2\left( { - 2} \right) + \left( { - 1} \right)\left( { - 1} \right) = 3 - 4 + 1 = 0$$
$$\therefore $$  given line is $$ \bot $$ to the normal to the plane i.e., given line is parallel to the given plane.
Also $$\left( {1,\, - 1,\,3} \right)$$   lies on the plane $$x - 2y - z = 0$$    if $$1 - 2\left( { - 1} \right) - 3 = 0$$     i.e. $$1 + 2 - 3 = 0$$    which is true.
$$\therefore \,L$$  lies in plane $$\pi .$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section