Question

Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$       such that $$x = 0$$  is the only real root of $$P'\left( x \right) = 0.$$   If $$P\left( { - 1} \right) < {\text{ }}P\left( 1 \right),$$   then in the interval [1, -1]:

A. $$P\left( { - 1} \right)$$  is not minimum but $$P\left( { 1} \right)$$  is the maximum of $$P$$  
B. $$P\left( { - 1} \right)$$  is the minimum but $$P\left( { 1} \right)$$  is not the maximum of $$P$$
C. Neither $$P\left( { - 1} \right)$$  is the minimum nor $$P\left( { 1} \right)$$  is the maximum of $$P$$
D. $$P\left( { - 1} \right)$$  is the minimum and $$P\left( { 1} \right)$$  is the maximum of $$P$$
Answer :   $$P\left( { - 1} \right)$$  is not minimum but $$P\left( { 1} \right)$$  is the maximum of $$P$$
Solution :
$$\eqalign{ & {\text{We}}\,{\text{have}}\,P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d \cr & \Rightarrow P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx + c \cr & {\text{But }}P'\left( 0 \right) = 0 \Rightarrow c = 0 \cr & \therefore \,P\left( x \right) = {x^4} + a{x^3} + b{x^2} + d \cr & {\text{As}}\,{\text{given}}\,{\text{that}}\,P\left( { - 1} \right) < P\left( a \right) \cr & \Rightarrow \,1 - a + b + d\, < \,1 + a + b + d\, \Rightarrow a > 0 \cr & {\text{Now }}P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx = x\left( {4{x^2}{\text{ }} + {\text{ }}3ax + 2b} \right) \cr & {\text{As }}P'\left( x \right) = 0,{\text{ there is only one solution }}x = 0, \cr & {\text{therefore }}4{x^2} + 3ax + 2b = 0{\text{ should not have any real roots i}}{\text{.e }}D < 0 \cr & \Rightarrow \,9{a^2} - 32b < 0 \Rightarrow b > \frac{{9{a^2}}}{{32}} > 0 \cr & {\text{Hence}}\,a,b > 0 \Rightarrow P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx > 0\,\forall x > 0 \cr & \therefore \,P\left( x \right)\,{\text{is}}\,{\text{an}}\,{\text{increasing}}\,{\text{function}}\,{\text{on}}\,\left( {0,1} \right) \cr & \therefore \,P\left( 0 \right) < P\left( a \right) \cr & {\text{Similarly we can prove }}P\left( x \right)\,{\text{is decreasing on}}\,\left( { - 1,0} \right) \cr & \therefore \,P\left( { - 1} \right) > P\left( 0 \right) \cr & {\text{So we can conclude that}} \cr & {\text{Max}}\,P\left( x \right) = P\left( 1 \right)\,{\text{and}}\,{\text{Min}}\,P\left( x \right) = P\left( 0 \right) \cr & \Rightarrow P\left( { - 1} \right)\,{\text{is}}\,{\text{not minimum but }}P\left( 1 \right){\text{ is the maximum of }}P. \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section