Question

Given $$f:\left[ { - 2a,\,2a} \right] \to R$$    is an odd function such that the left hand derivative at $$x = a$$  is zero and $$f\left( x \right) = f\left( {2a - x} \right)\forall \,x\, \in \left( {a,\,2a} \right),$$       then its left had derivative at $$x = - a$$   is :

A. $$0$$  
B. $$a$$
C. $$ - a$$
D. does not exist
Answer :   $$0$$
Solution :
$$\eqalign{ & {\text{Given, }}f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a - h} \right) - f\left( a \right)}}{{ - h}} = 0.....\left( 1 \right) \cr & {\text{Now, }}f'\left( { - {a^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( { - a - h} \right) - f\left( { - a} \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - f\left( {a + h} \right) + f\left( a \right)}}{{ - h}}\,\,\,\,\,\left[ {\because \,f\left( x \right)\,{\text{is odd function}}} \right] \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - f\left( {a - h} \right) + f\left( a \right)}}{{ - h}}\,\,\,\,\left[ {\because \,f\left( {2a - x} \right) = f\left( x \right) \Rightarrow f\left( {a + x} \right) = f\left( {a - x} \right)} \right] \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a - h} \right) - f\left( a \right)}}{h} \cr & = 0\,\,\,\,\,\,\left[ {{\text{From }}\left( 1 \right)} \right] \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section