Question

Given both $$\theta $$ and $$\phi $$ are acute angles and $$\sin \theta = \frac{1}{2},\,\cos \phi = \frac{1}{3},$$     then the value of $$\theta + \phi $$  belongs to

A. $$\left( {\frac{\pi }{3},\frac{\pi }{2}} \right]$$
B. $${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$  
C. $$\left( {\frac{{2\pi }}{3},\frac{{5\pi }}{6}} \right]$$
D. $$\left( {\frac{{5\pi }}{6},\pi } \right]$$
Answer :   $${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$
Solution :
Given that $$\sin \theta = \frac{1}{2}\,{\text{and}}\,\cos \phi = \frac{1}{3}\,{\text{and }}\theta \,{\text{and }}\phi $$        both are acute angles
$$\eqalign{ & \therefore \,\,\theta = \frac{\pi }{6}\,{\text{and 0 < }}\frac{1}{3} < \frac{1}{2} \cr & {\text{or }}\cos \frac{\pi }{2} < \cos \phi < \cos \frac{\pi }{3}\,{\text{or }}\frac{\pi }{3} < \phi < \frac{\pi }{2} \cr & \therefore \,\,\frac{\pi }{3} + \frac{\pi }{6} < \theta + \phi < \frac{\pi }{2} + \frac{\pi }{6}{\text{ or }}\frac{\pi }{2} < \theta + \phi < \frac{{2\pi }}{3} \cr & \Rightarrow \,\,\theta + \phi \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right) \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section