Question

Force $$\hat i + 2\hat j - 3\hat k,\,2\hat i + 3\hat j + 4\hat k$$       and $$ - \hat i - \hat j + \hat k$$    are acting at the point $$P\left( {0,\,1,\,2} \right).$$    The moment of these forces about the point $$A\left( {1,\, - 2,\,0} \right)$$    is :

A. $$2\hat i - 6\hat j + 10\hat k$$
B. $$ - 2\hat i + 6\hat j - 10\hat k$$  
C. $$2\hat i + 6\hat j - 10\hat k$$
D. None of these
Answer :   $$ - 2\hat i + 6\hat j - 10\hat k$$
Solution :
If $$\overrightarrow F $$ be the resultant force, then $$\overrightarrow F = 2\hat i + 4\hat j + 2\hat k$$
Also, $$\overrightarrow r = \overrightarrow {AP} = - \hat i + 3\hat j + 2\hat k$$
$$\therefore $$  Required moment
\[ = \overrightarrow r \times \overrightarrow F = \left| \begin{array}{l} \,\,\,\hat i\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\hat k\\ - 1\,\,\,\,\,3\,\,\,\,\,2\\ \,\,\,2\,\,\,\,\,\,\,4\,\,\,\,\,2 \end{array} \right| = - 2\hat i + 6\hat j - 10\hat k\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section