Question

For $$x \in R - \left\{ {0,1} \right\},$$    let $$\,{f_1}\left( x \right) = \frac{1}{x},\,{f_2}\left( x \right) = 1 - x$$       and $${f_3}\left( x \right) = \frac{1}{{1 - x}}$$    be three given functions. If a function, $$J\left( x \right)$$  satisfies $$\left( {{f_2}oJo{f_1}} \right)\left( x \right) = {\text{ }}{f_3}\left( x \right)$$     then $$J\left( x \right)$$  is equal to

A. $${f_3}(x)$$  
B. $${f_4}(x)$$
C. $${f_2}(x)$$
D. $${f_1}(x)$$
Answer :   $${f_3}(x)$$
Solution :
The given relation is
$$\eqalign{ & \left( {{f_2}oJo{f_1}} \right)\left( x \right) = {f_3}\left( x \right) = \frac{1}{{1 - x}} \cr & \Rightarrow \left( {{f_2}oJ} \right)\left( {{f_1}\left( x \right)} \right) = \frac{1}{{1 - x}} \cr & \Rightarrow \left( {{f_2}oJ} \right) = \left( {\frac{1}{x}} \right) = \frac{1}{{1 - x}}\,\left[ {\because {f_1}\left( x \right) = \frac{1}{x}} \right] \cr & \Rightarrow {f_2}\left( {J\left( {\frac{1}{x}} \right)} \right) = \frac{1}{{1 - x}} \cr & \Rightarrow \left( {{f_2}J\left( x \right)} \right) = \frac{1}{{1 - \frac{1}{x}}} = \frac{x}{{x - 1}}\left[ {\frac{1}{x}{\text{ is replaced by }}x} \right] \cr & \Rightarrow 1 - J\left( x \right) = \frac{x}{{x - 1}}\left[ {\lambda {f_2}\left( x \right) = 1 - x} \right] \cr & \therefore J\left( x \right) = 1 - \frac{x}{{x - 1}} = \frac{1}{{1 - x}} = {f_3}\left( x \right) \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section