Question
For real numbers $$x$$ and $$y,$$ we define $$xRy$$ iff $$x - y + \sqrt 5 $$ is an irrational number. The relation $$R$$ is :
A.
reflexive
B.
symmetric
C.
transitive
D.
none of these
Answer :
reflexive
Solution :
$$\eqalign{
& x\, \in \,R \Rightarrow x - x + \sqrt 5 = \sqrt 5 {\text{ is an irrational number}}{\text{.}} \cr
& \therefore \,\left( {x,\,x} \right) \in \,R \cr
& \therefore \,R{\text{ is reflexive}}{\text{.}} \cr
& \left( {\sqrt 5 ,\,1} \right) \in \,R{\text{ because}} \cr
& \sqrt 5 - 1 + \sqrt 5 = 2\sqrt 5 - 1{\text{ which is an irrational number}}{\text{.}} \cr
& \therefore \,\left( {1,\,\sqrt 5 } \right) \notin \,R \cr
& \therefore \,R{\text{ is not symmetric}}{\text{.}} \cr
& {\text{We have, }}\left( {\sqrt 5 ,\,1} \right),\,\left( {1,\,2\sqrt 5 } \right) \in \,R{\text{ because}} \cr
& \sqrt 5 - 1 + \sqrt 5 = 2\sqrt 5 - 1{\text{ if }}1 - 2\sqrt 5 + \sqrt 5 = 1 - \sqrt 5 \cr
& {\text{are irrational number}}{\text{.}} \cr
& {\text{Also, }}\left( {\sqrt 5 ,\,2\sqrt 5 } \right) \in \,R{\text{ and}} \cr
& \sqrt 5 - 2\sqrt 5 + \sqrt 5 = 0\,{\text{which is not an irrational number}}{\text{.}} \cr
& \therefore \,\left( {\sqrt 5 ,\,2\sqrt 5 } \right) \notin \,R \cr
& \therefore \,R{\text{ is not transitive}}{\text{.}} \cr} $$