Question

For $$ - \pi < x < \pi ,$$   the values of $$x$$ which satisfy the relation $${11^{1 + \left| {\cos x} \right| + {{\cos }^2}x + \left| {{{\cos }^3}x} \right| + .....{\text{ upto }}\infty }} = 121$$       are given by

A. $$ \pm \frac{\pi }{3}, \pm \frac{{2\pi }}{3}$$  
B. $$\frac{\pi }{3},\frac{{2\pi }}{4}$$
C. $$\frac{\pi }{4},\frac{{3\pi }}{4}$$
D. None of these
Answer :   $$ \pm \frac{\pi }{3}, \pm \frac{{2\pi }}{3}$$
Solution :
Since, $$0 < x < \pi , - 1 < \cos x < 1$$
$$ \Rightarrow 0 \leqslant \left| {\cos x} \right| < 1.$$
We can write the given expression as $${11^{\frac{1}{{\left( {1 - \left| {\cos x} \right|} \right)}}}} = 121$$
$$\eqalign{ & \Rightarrow \frac{1}{{1 - \left| {\cos x} \right|}} = 2 \cr & \Rightarrow 1 - \left| {\cos x} \right| = \frac{1}{2} \cr & \Rightarrow \left| {\cos x} \right| = \frac{1}{2} \cr & \Rightarrow \cos x = \pm \frac{1}{2} \cr & \Rightarrow x = \pm \frac{\pi }{3}, \pm \frac{{2\pi }}{3} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section