Question

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$  
Answer :   $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Solution :
$$\eqalign{ & \left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right| \cr & \Rightarrow \left| {\left| {\hat a} \right|\left| {\hat b} \right|\sin \,\theta \,\hat n.\,\vec c} \right|\, = \left| {\hat a} \right|\left| {\hat b} \right|\left| {\hat c} \right| \cr & {\text{where }}\theta {\text{ is angle between }}\vec a{\text{ and }}\vec b \cr & \Rightarrow \left| {\hat a} \right|\left| {\hat b} \right|\left| {\hat c} \right|\,\left| {\sin \,\theta \,\cos \,\alpha } \right| = \left| {\hat a} \right|\left| {\hat b} \right|\left| {\hat c} \right| \cr & {\text{where }}\alpha \,{\text{is angle betwen }}\vec c{\text{ and }}\hat n \cr & \Rightarrow \left| {\sin \,\theta \,} \right|\,\left| {\cos \,\alpha } \right| = 1 \cr & \Rightarrow \theta = \frac{\pi }{2}{\text{ and }}\alpha = 0 \cr & \Rightarrow \vec a \bot \vec b{\text{ and }}\vec c\left\| {\hat n} \right. \cr & \Rightarrow \vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section