Question

For any $$\theta \in \left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$$   the expression $$3{\left( {\sin \theta - \cos \theta } \right)^4} + 6{\left( {\sin \theta + \cos \theta } \right)^2} + 4\,{\sin ^6}\theta $$         equals:

A. $$13 - 4\,{\cos ^2}\theta + 6\,{\sin ^2}\theta {\cos ^2}\theta $$
B. $$13 - 4\,{\cos ^6}\theta $$  
C. $$13 - 4\,{\cos ^2}\theta + 6\,{\cos ^4}\theta $$
D. $$13 - 4\,{\cos ^4}\theta + 2\,{\sin ^2}\theta {\cos ^2}\theta $$
Answer :   $$13 - 4\,{\cos ^6}\theta $$
Solution :
$$\eqalign{ & 3{\left( {\sin \theta - \cos \theta } \right)^4} + 6{\left( {\sin \theta + \cos \theta } \right)^2} + 4\,{\sin ^6}\theta \cr & = 3{\left( {1 - 2\sin \theta \cos \theta } \right)^2} + 6\left( {1 + 2\sin \theta \cos \theta } \right) + 4\,{\sin ^6}\theta \cr & = 3\left( {1 + 4{{\sin }^2}\theta\, {{\cos }^2}\theta - 4\sin \theta \cos \theta } \right) + 6 + 12\sin \theta \cos \theta + 4\,{\sin ^6}\theta \cr & = 9 + 12\,{\sin ^2}\theta\, {\cos ^2}\theta + 4\,{\sin ^6}\theta \cr & = 9 + 12\,{\cos ^2}\theta \left( {1 - {{\cos }^2}\theta } \right) + 4{\left( {1 - {{\cos }^2}\theta } \right)^3} \cr & = 9 + 12\,{\cos ^2}\theta - 12\,{\cos ^4}\theta + 4\left( {1 - {{\cos }^6}\theta - 3\,{{\cos }^2}\theta + 3\,{{\cos }^4}\theta } \right) \cr & = 9 + 4 - 4\,{\cos ^6}\theta \cr & = 13 - 4\,{\cos ^6}\theta \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section