Question

For all $$'x'\,,{x^2} + 2ax + 10 - 3a > 0,$$      then the interval in which $$'a'$$ lies is

A. $$a < - 5$$
B. $$- 5 < a < 2$$  
C. $$a > 5$$
D. $$2 < a < 5$$
Answer :   $$- 5 < a < 2$$
Solution :
$$\eqalign{ & {\text{Given equation - }} \cr & {x^2} + 2ax + \left( {10 - 3a} \right) > 0{\text{ for all }}x \in R \cr & {\text{Here, }}A = 1,\,B = 2a,\,C = \left( {10 - 3a} \right) \cr & {\text{As we know that,}} \cr & A{x^2} + Bx + C > 0{\text{ for all }}x \in R{\text{ if}} \cr & A > 0{\text{ and }}D < 0 \cr & A = 1 > 0 \cr & {\text{Now, }}D < 0 \cr & {B^2} - 4AC < 0 \cr & {\left( {2a} \right)^2} - 4\left( 1 \right)\left( {10 - 3a} \right) < 0 \cr & 4{a^2} - 40 + 12a < 0 \cr & {a^2} + 3a - 10 < 0 \cr & \left( {a + 5} \right)\left( {a - 2} \right) < 0 \cr & a \in \left( { - 5,\,2} \right) \cr & \therefore \, - 5 < a < 2 \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section