Question

For all $$x \in \left( {0,1} \right)$$

A. $${e^x} < 1 + x$$
B. $${\log _e}\left( {1 + x} \right) < x$$  
C. $$\sin x > x$$
D. $${\log _e}x > x$$
Answer :   $${\log _e}\left( {1 + x} \right) < x$$
Solution :
$$\eqalign{ & {\text{Let}}\,f\left( x \right) = {e^x} - 1 - x\,{\text{then}}\,f'\left( x \right) = {e^x} - 1 > 0\,{\text{for}}\,x \in \left( {0,1} \right) \cr & \therefore f\left( x \right)\,{\text{is}}\,{\text{an increasing function}}{\text{.}} \cr & \therefore f\left( x \right) > f\left( 0 \right),\forall \,x\, \in \left( {0,1} \right) \cr & \Rightarrow {e^x} - 1 - x > 0 \Rightarrow {e^x} > 1 + x \cr & \therefore \left( {\text{a}} \right)\,{\text{does not hold}}. \cr & \left( {\text{b}} \right)\,{\text{Let}}\,g\left( x \right) = \log \left( {1 + x} \right) - x \cr & {\text{then}}\,g'\left( x \right) = \frac{1}{{1 + x}} - 1 = - \frac{x}{{1 + x}} < 0,\forall \,x \in \left( {0,1} \right) \cr & \therefore g\left( x \right)\,{\text{is decreasing on}}\,\left( {0,1} \right)\,\therefore x > 0 \cr & \Rightarrow g\left( x \right) < g\left( 0 \right) \cr & \Rightarrow \log \left( {1 + x} \right) - x < 0 \Rightarrow \log \left( {1 + x} \right) < x \cr & \therefore \left( {\text{b}} \right){\text{ holds}}{\text{. Similarly it can be shown that}}\,\left( {\text{c}} \right)\,{\text{and}}\,\left( {\text{d}} \right)\,{\text{do}}\,{\text{not hold}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section