Question

For all complex numbers $${z_1},{z_2}$$  satisfying $$\left| {{z_1}} \right| = 12\,\,{\text{and }}\left| {{z_2} - 3 - 4i} \right| = 5,$$       the minimum value of $$\left| {{z_1} - {z_2}} \right|$$  is

A. 0
B. 2  
C. 7
D. 17
Answer :   2
Solution :
$$\left| {{z_1}} \right| = 12$$
$$ \Rightarrow \,{z_{1\,}}\,$$ lies on a circle with center $$\left( {0,0} \right)$$  and radius 12 unites, and $$\left| {{z_2} - 3 - 4i} \right| = 5$$
$$ \Rightarrow \,\,{z_2}$$  lies on a circle with center $$\left( {3,4} \right)$$  and radius 5 units.
Complex Number mcq solution image
From fig. it is clear that $$\left| {{z_1} - {z_2}} \right|$$   i.e., distance between $${{z_1}}$$ and $${{z_2}}$$ will be min when they lie at $$A$$ and $$B$$ resp. i.e., $$O, C, B, A$$   are collinear as shown. Then $${{z_1} - {z_2}}$$  $$= AB = OA$$  $$ - OB = 12 - 2(5) = 2.$$     As above is the min, value, we must have $$\left| {{z_1} - {z_2}} \right| \geqslant 2.$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section