Question
For $$2 \leqslant r \leqslant n,$$ \[\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + 2\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right) = \]
A.
\[\left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r - 1}
\end{array}} \right)\]
B.
\[2\left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r + 1}
\end{array}} \right)\]
C.
\[2\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
D.
\[\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
Answer :
\[\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
Solution :
\[\begin{array}{l}
\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + 2\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right)\\
= \left[ {\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right)} \right] + \left[ {\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right)} \right]
\end{array}\]
NOTE THIS STEP :
\[\left( {\begin{array}{*{20}{c}}
{n + 1}\\
r
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r - 1}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
$$\left[ {\because \,{\,^n}{C_r} + {\,^n}{C_{r - 1}} = {\,^{n + 1}}{C_r}} \right]$$