Question

\[{\rm{Let }}f\left( x \right) = \left\{ \begin{array}{l} \sqrt {1 + {x^2}} ,\,x < \sqrt 3 \\ \sqrt 3 x - 1,\,\sqrt 3 \le x < 4\\ \left[ x \right],\,4 \le x < 5\\ \left| {1 - x} \right|,\,x \ge 5 \end{array} \right.,\]     $$\eqalign{ & {\text{where}}\,\,\left[ x \right]{\text{ is the greatest integer }} \leqslant x \cr} $$
The number of points of discontinuity of $$f\left( x \right)$$  in $$R$$ is :

A. 3
B. 0
C. infinite
D. none of these  
Answer :   none of these
Solution :
We know that $$\left| {1 - x} \right|$$  is continuous everywhere, $$\left[ x \right]$$ is continuous everywhere except at integers, $$\sqrt {1 + {x^2}} $$   and $$\sqrt 3 x - 1$$   are continuous in their respective intervals of definition. So, the only doubtful points of continuity are $$x = \sqrt 3 ,\,4,\,5$$
$$\eqalign{ & f\left( {\sqrt 3 - 0} \right) = \mathop {\lim }\limits_{h \to 0} \sqrt {1 + {{\left( {\sqrt 3 - h} \right)}^2}} = 2\,; \cr & f\left( {\sqrt 3 + 0} \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {\sqrt 3 \left( {\sqrt 3 + h} \right) - 1} \right\} = 2\,;\,\,\,\,\,f\left( {\sqrt 3 } \right) = 2 \cr & f\left( {4 - 0} \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {\sqrt 3 \left( {4 - h} \right) - 1} \right\} = 4\sqrt 3 - 1\,;\,\,\,f\left( {4 + 0} \right) = \mathop {\lim }\limits_{h \to 0} \left[ {4 + h} \right] = 4 \cr & f\left( {5 - 0} \right) = \mathop {\lim }\limits_{h \to 0} \left[ {5 - h} \right] = \mathop {\lim }\limits_{h \to 0} \,4 = 4\,; \cr & f\left( {5 + 0} \right) = \mathop {\lim }\limits_{h \to 0} \left| {1 - \left( {5 + h} \right)} \right| = 4\,;\,\,\,\,\,f\left( 5 \right) = 4 \cr & \therefore f\left( x \right){\text{ is discontinuous at }}x = 4{\text{ only}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section