Solution :
Let $$QT$$ be the tower of height $$\left( h \right)$$ in $$\Delta \,PRS.$$
Now, each triangle $$QPR, QRS, QSP$$ are equilateral.
Thus, $$QP = QS = QR = a.$$
In $$\Delta \,QTP,$$
$$\eqalign{
& Q{P^2} = Q{T^2} + P{T^2} \cr
& \Rightarrow {a^2} = {h^2} + {\left( {\frac{a}{2}\sec {{30}^ \circ }} \right)^2} \cr} $$

$$\eqalign{
& \Rightarrow {a^2} = {h^2} + \frac{{{a^2}}}{4} \cdot \frac{4}{3} \cr
& \Rightarrow {a^2} = {h^2} + \frac{{{a^2}}}{3} \cr
& \Rightarrow {a^2} - \frac{{{a^2}}}{3} = {h^2} \cr
& \Rightarrow \frac{{3{a^2} - {a^2}}}{3} = {h^2} \cr
& \therefore 2{a^2} = 3{h^2} \cr} $$