Question

Domain of the function $$f\left( x \right) = \sqrt {\frac{1}{{\sin x}} - 1} ,{\text{ is}}$$

A. $$\mathop \cup \limits_{n \in I} \left( {2n\pi ,2n\pi + \frac{\pi }{2}} \right)$$
B. $$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$  
C. $$\mathop \cup \limits_{n \in I} \left[ {\left( {2n - 1} \right)\pi , 2n\pi} \right ]$$
D. None of these
Answer :   $$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$
Solution :
$$\eqalign{ & \frac{1}{{\sin x}} - 1 \geqslant 0;\,\,\frac{{1 - \sin x}}{{\sin x}} \geqslant 0 \cr & \frac{{\sin x - 1}}{{\sin x}} \leqslant 0 \cr & \Rightarrow 0 < \sin x \leqslant 1 \cr & \Rightarrow x \in \mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right] \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section