Question

$${\text{cose}}{{\text{c}}^{ - 1}}\left( {\cos x} \right)$$   is real if

A. $$x \in \left[ { - 1,1} \right]$$
B. $$x \in R$$
C. $$x$$ is an odd multiple of $$\frac{\pi }{2}$$
D. $$x$$ is a multiple of $$\pi $$  
Answer :   $$x$$ is a multiple of $$\pi $$
Solution :
$${\text{cose}}{{\text{c}}^{ - 1}}\left( {\cos x} \right)$$   exists if $$\cos x \leqslant - 1$$   or $$\cos x \geqslant 1.$$   But $$ - 1 \leqslant \cos x \leqslant 1.$$
$$\therefore {\text{cose}}{{\text{c}}^{ - 1}}\left( {\cos x} \right)$$    exists if $$\cos x = 1\,{\text{or,}} - 1$$
$$ \Rightarrow \,\,x = n\pi ,n \in {\Bbb Z}.$$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section