Question
$${\cos ^{ - 1}}\left\{ {\frac{1}{2}{x^2} + \sqrt {1 - {x^2}} \cdot \sqrt {1 - \frac{{{x^2}}}{4}} } \right\} = {\cos ^{ - 1}}\frac{x}{2} - {\cos ^{ - 1}}x$$ holds for
A.
$$\left| x \right| \leqslant 1$$
B.
$$x \in R$$
C.
$$0 \leqslant x \leqslant 1$$
D.
$$ - 1 \leqslant x \leqslant 0$$
Answer :
$$0 \leqslant x \leqslant 1$$
Solution :
Clearly, $$0 \leqslant {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \leqslant \frac{\pi }{2}$$ because $${\cos ^{ - 1}}x$$ is in the first quadrant when $$x$$ is positive.
$$\therefore \,\,{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \geqslant 0.\,{\text{So,}}\,{\cos ^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x.$$
Also $$\left| {\frac{x}{2}} \right| \leqslant 1,\left| x \right| \leqslant 1.$$ This means $$\left| x \right| \leqslant 1.$$
In $$0 \leqslant x \leqslant 1,$$ clearly $${\cos^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x$$ because $${\cos ^{ - 1}}\alpha $$ increases as $$\alpha $$ decreases.