Question

$${\cos ^{ - 1}}\left\{ {\frac{1}{2}{x^2} + \sqrt {1 - {x^2}} \cdot \sqrt {1 - \frac{{{x^2}}}{4}} } \right\} = {\cos ^{ - 1}}\frac{x}{2} - {\cos ^{ - 1}}x$$           holds for

A. $$\left| x \right| \leqslant 1$$
B. $$x \in R$$
C. $$0 \leqslant x \leqslant 1$$  
D. $$ - 1 \leqslant x \leqslant 0$$
Answer :   $$0 \leqslant x \leqslant 1$$
Solution :
Clearly, $$0 \leqslant {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \leqslant \frac{\pi }{2}$$    because $${\cos ^{ - 1}}x$$  is in the first quadrant when $$x$$ is positive.
$$\therefore \,\,{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \geqslant 0.\,{\text{So,}}\,{\cos ^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x.$$
Also $$\left| {\frac{x}{2}} \right| \leqslant 1,\left| x \right| \leqslant 1.$$   This means $$\left| x \right| \leqslant 1.$$
In $$0 \leqslant x \leqslant 1,$$   clearly $${\cos^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x$$    because $${\cos ^{ - 1}}\alpha $$  increases as $$\alpha $$ decreases.

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section