Question

Consider the matrices \[A = \left[ {\begin{array}{*{20}{c}} 4&6&{ - 1}\\ 3&0&2\\ 1&{ - 2}&5 \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2&4\\ 0&1\\ { - 1}&2 \end{array}} \right],C = \left[ {\begin{array}{*{20}{c}} 3\\ 1\\ 2 \end{array}} \right]\]         Out of the given matrix products, which one is not defined

A. $${\left( {AB} \right)^T}C$$
B. $${C^T}C{\left( {AB} \right)^T}$$  
C. $${C^T}AB$$
D. $${A^T}AB{B^T}C$$
Answer :   $${C^T}C{\left( {AB} \right)^T}$$
Solution :
$$\eqalign{ & A \to 3 \times 3,B \to 3 \times 2,C \to 3 \times 1 \cr & AB \to 3 \times 2 \cr & \Rightarrow \,{\left( {AB} \right)^T} = 2 \times 3 \cr & \Rightarrow \,{\left( {AB} \right)^T}C\,{\text{is}}\,{\text{defined}} \cr & \Rightarrow \,{C^T} \to 1 \times 3, \cr & \Rightarrow \,{C^T}C \to 1 \times 1 \cr} $$
Hence, $${C^T}C{\left( {AB} \right)^T}$$   is not defined. Now, $$C^T AB$$  is also defined.
$$\eqalign{ & {A^T} \to 3 \times 3,{B^T} \to 2 \times 3;\,\,\,{A^T}A \to 3 \times 3 \cr & B{B^T} \to 3 \times 3 \cr & \Rightarrow \,{A^T}AB{B^T} \to 3 \times 3 \cr & \Rightarrow \,{A^T}AB{B^T}C\,{\text{is}}\,{\text{defined}} \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section