Question

Consider the function \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,\,{x^2},\,\,\,\,\,\,\,\,x > 2\\ 3x - 2,\,\,x \le 2\, \end{array} \right.\]
Which one of the following statements is correct in respect of the above function ?

A. $$f\left( x \right)$$  is derivable but not continuous at $$x = 2.$$
B. $$f\left( x \right)$$  is continuous but not derivable at $$x = 2.$$  
C. $$f\left( x \right)$$  is neither continuous nor derivable at $$x = 2.$$
D. $$f\left( x \right)$$  is continuous as well as derivable at $$x = 2.$$
Answer :   $$f\left( x \right)$$  is continuous but not derivable at $$x = 2.$$
Solution :
$$\eqalign{ & {\text{First we check continuity at }}x = 2 \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} f\left( {2 - h} \right) \cr & = \mathop {\lim }\limits_{h \to 0} 3\left( {2 - h} \right) - 2 \cr & = \mathop {\lim }\limits_{h \to 0} 4 - 3h \cr & = 4 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} f\left( {2 + h} \right) \cr & = \mathop {\lim }\limits_{h \to 0} {\left( {2 + h} \right)^2} \cr & = 4 \cr & {\text{Also, }}f\left( 2 \right) = {\left( 2 \right)^2} = 4 \cr & {\text{Since, L}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = f\left( 2 \right) \cr & \therefore \,f\left( x \right)\,{\text{is continuous at }}2 \cr & {\text{Now, we check for differentiability}} \cr & {\text{L}}{\text{.H}}{\text{.D}}{\text{. at }}x = 2 \cr & f'\left( x \right) = 3x - 2 \cr & f'\left( x \right) = 3 \cr & {\left. {f'\left( x \right)} \right|_{x = 2}} = 3 \cr & {\text{R}}{\text{.H}}{\text{.D}}{\text{. at }}x = 2 \cr & f'\left( x \right) = {x^2} \cr & f'\left( x \right) = 2x \cr & {\left. {f'\left( x \right)} \right|_{x = 2}} = 4 \cr & {\text{Since L}}{\text{.H}}{\text{.D}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} \cr & \therefore \,f\left( x \right){\text{ is not dervable at }}x = 2 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section