Question

Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,\,x \in \,R.$$
Statement-1 : $$f'\left( 4 \right) = 0$$
Statement-2 : $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f\left( 2 \right) = f\left( 5 \right).$$

A. Statement-1 is false, Statement-2 is true.
B. Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
C. Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.  
D. Statement-1 is true, statement-2 is false.
Answer :   Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
Solution :
\[\begin{array}{l} f\left( x \right) = \left| {x - 2} \right| = \left\{ \begin{array}{l} x - 2\,\,,\,\,x - 2 \ge 0\\ 2 - x\,\,,\,\,x - 2 \le 0 \end{array} \right.\\ = \left\{ \begin{array}{l} x - 2\,\,,\,\,x \ge 2\\ 2 - x\,\,,\,\,x \le 2 \end{array} \right. \end{array}\]
Similarly, \[f\left( x \right) = \left| {x - 5} \right| = \left\{ \begin{array}{l} x - 5\,\,,\,\,x \ge 5\\ 5 - x\,\,,\,\,x \le 5 \end{array} \right.\]
$$\eqalign{ & \therefore f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right| \cr & = \left\{ {x - 2 + 5 - x = 3,\,\,2 \leqslant x \leqslant 5} \right\} \cr & {\text{Thus}} \cr & f\left( x \right) = 3,\,2 \leqslant x \leqslant 5 \cr & f'\left( x \right) = 0,\,2 < x < 5 \cr & f'\left( 4 \right) = 0 \cr} $$
$$\therefore $$ statement 1 is true.
Differentiability and Differentiation mcq solution image
$$\because f\left( 2 \right) = 0 + \left| {2 - 5} \right| = 3$$     and $$f\left( 5 \right) = \left| {5 - 2} \right| + 0 = 3$$
$$\therefore $$ statement-2 is also true and a correct explanation for statement 1.

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section