Solution :
\[\begin{array}{l}
f\left( x \right) = \left| {x - 2} \right| = \left\{ \begin{array}{l}
x - 2\,\,,\,\,x - 2 \ge 0\\
2 - x\,\,,\,\,x - 2 \le 0
\end{array} \right.\\
= \left\{ \begin{array}{l}
x - 2\,\,,\,\,x \ge 2\\
2 - x\,\,,\,\,x \le 2
\end{array} \right.
\end{array}\]
Similarly, \[f\left( x \right) = \left| {x - 5} \right| = \left\{ \begin{array}{l}
x - 5\,\,,\,\,x \ge 5\\
5 - x\,\,,\,\,x \le 5
\end{array} \right.\]
$$\eqalign{
& \therefore f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right| \cr
& = \left\{ {x - 2 + 5 - x = 3,\,\,2 \leqslant x \leqslant 5} \right\} \cr
& {\text{Thus}} \cr
& f\left( x \right) = 3,\,2 \leqslant x \leqslant 5 \cr
& f'\left( x \right) = 0,\,2 < x < 5 \cr
& f'\left( 4 \right) = 0 \cr} $$
$$\therefore $$ statement 1 is true.

$$\because f\left( 2 \right) = 0 + \left| {2 - 5} \right| = 3$$ and $$f\left( 5 \right) = \left| {5 - 2} \right| + 0 = 3$$
$$\therefore $$ statement-2 is also true and a correct explanation for statement 1.