Solution :
$$\eqalign{
& f\left( x \right) = \log \,x \cr
& {\text{Clearly }}f\left( x \right){\text{ is increasing on}}\,\left( {0,\,\infty } \right) \cr
& f\left( x \right) = {e^x} - x\,\log \,x \cr
& f'\left( x \right) = {e^x} - \left( {\log \,x + 1} \right) \cr} $$

From the figure it is clear that $$f'\left( x \right) > 0$$ on $$\left( {1,\,\infty } \right).$$
So both statements (1) & (2) are correct.