Question

Consider: $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sqrt {\frac{{1 + \sin x}}{{1 - \sin x}}} } \right),\,x \in \left( {0,\frac{\pi }{2}} \right).$$
A normal to $$y = f\left( x \right)$$   at $$x = \frac{p}{6}$$  also passes through the point :

A. $$\left( {\frac{\pi }{6},0} \right)$$
B. $$\left( {\frac{\pi }{4},0} \right)$$
C. (0, 0)
D. $$\left( {0,\frac{{2\pi }}{3}} \right)$$  
Answer :   $$\left( {0,\frac{{2\pi }}{3}} \right)$$
Solution :
$$\eqalign{ & f\left( x \right) = {\tan ^{ - 1}}\left( {\sqrt {\frac{{1 + \sin x}}{{1 - \sin x}}} } \right) \cr & = {\tan ^{ - 1}}\left( {\sqrt {\frac{{{{\left( {\sin \frac{x}{2} + \cos \frac{x}{2}} \right)}^2}}}{{{{\left( {\sin \frac{x}{x} - \cos \frac{x}{2}} \right)}^2}}}} } \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{1 + \tan \frac{x}{2}}}{{1 - \tan \frac{x}{2}}}} \right) \cr & = {\tan ^{ - 1}}\left( {\tan \left( {\frac{\pi }{4} + \frac{x}{2}} \right)} \right) \cr & \Rightarrow y = \frac{\pi }{4} + \frac{x}{2} \cr & \Rightarrow \frac{{dy}}{{dx}} = \frac{1}{2} \cr & {\text{Slope of normal }} = \frac{{ - 1}}{{\left( {\frac{{dy}}{{dx}}} \right)}} = - 2 \cr & {\text{At }}\left( {\frac{\pi }{6},\frac{\pi }{4} + \frac{\pi }{{12}}} \right) \cr & y - \left( {\frac{\pi }{4} + \frac{\pi }{{12}}} \right) = - 2\left( {x - \frac{\pi }{6}} \right) \cr & y - \frac{{4\pi }}{{12}} = - 2x + \frac{{2\pi }}{6} \cr & y - \frac{\pi }{3} = - 2x + \frac{\pi }{3} \cr & y = - 2x + \frac{{2\pi }}{3} \cr} $$
This equation is satisfied only by the point $$\left( {0,\frac{{2\pi }}{3}} \right)$$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section