Question
Consider an infinite geometric series with first term $$a$$ and common ratio $$r$$ . If its sum is 4 and the second term is $$\frac{3}{4}$$ , then
A.
$$a = \frac{4}{7},r = \frac{3}{7}$$
B.
$$a = 2,r = \frac{3}{8}$$
C.
$$a = \frac{3}{2},r = \frac{1}{2}$$
D.
$$a = 3,r = \frac{1}{4}$$
Answer :
$$a = 3,r = \frac{1}{4}$$
Solution :
Sum = 4 and second term = $$\frac{3}{4}$$ , it is given that
first term is $$a$$ and common ratio $$r$$
$$\eqalign{
& \Rightarrow \,\,\frac{a}{{1 - r}} = 4{\text{ and }}ar = \frac{3}{4} \cr
& \Rightarrow r = \frac{3}{{4a}} \cr
& {\text{Therefore, }}\frac{a}{{1 - \frac{3}{{4a}}}} = 4 \cr
& \Rightarrow \,\frac{{4{a^2}}}{{4a - 3}} = 4 \cr
& {\text{or }}{a^2} - 4a + 3 = 0 \cr
& \Rightarrow \,\,\left( {a - 1} \right)\left( {a - 3} \right) = 0 \cr
& \Rightarrow \,\,a = 1{\text{ or 3}} \cr
& {\text{When }}a = 1,r = \frac{3}{4}{\text{ and when }}a = 3,r = \frac{1}{4} \cr} $$