Question

Consider a branch of the hyperbola $${x^2} - 2{y^2} - 2\sqrt 2 x - 4\sqrt 2 y - 6 = 0$$       with vertex at the point $$A.$$  Let $$B$$ be one of the end points of its latus rectum. If $$C$$ is the focus of the hyperbola nearest to the point $$A,$$  then the area of the triangle $$ABC$$  is :

A. $$1 - \sqrt {\frac{2}{3}} $$
B. $$\sqrt {\frac{3}{2}} - 1$$  
C. $$1 + \sqrt {\frac{2}{3}} $$
D. $$\sqrt {\frac{3}{2}} + 1$$
Answer :   $$\sqrt {\frac{3}{2}} - 1$$
Solution :
The given hyperbola is
$$\eqalign{ & {x^2} - 2{y^2} - 2\sqrt 2 x - 4\sqrt 2 y - 6 = 0 \cr & \Rightarrow \left( {{x^2} - 2\sqrt 2 x + 2} \right) - 2\left( {{y^2} + 2\sqrt 2 y + 2} \right) = 6 + 2 - 4 \cr & \Rightarrow {\left( {x - \sqrt 2 } \right)^2} - 2{\left( {y + \sqrt 2 } \right)^2} = 4 \cr & \Rightarrow \frac{{{{\left( {x - \sqrt 2 } \right)}^2}}}{{{2^2}}} - \frac{{{{\left( {y + \sqrt 2 } \right)}^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = 1 \cr & \therefore a = 2,\,\,\,b = \sqrt 2 \cr & \Rightarrow e = \sqrt {1 + \frac{2}{4}} = \sqrt {\frac{3}{2}} \cr} $$
Clearly $$\Delta ABC$$   is a right triangle.
Hyperbola mcq solution image
$$\eqalign{ & \therefore Ar\left( {\Delta ABC} \right) = \frac{1}{2} \times AC \times BC = \frac{1}{2}\left( {ae - a} \right) \times \frac{{{b^2}}}{a} \cr & = \frac{1}{2}\left( {e - 1} \right) \times {b^2} = \frac{1}{2}\left( {\sqrt {\frac{3}{2}} - 1} \right) \times 2 = \sqrt {\frac{3}{2}} - 1 \cr} $$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section