Question

Chord $$AB$$  is a diameter of the sphere $$\left| {\overrightarrow r - 2\overrightarrow i - \overrightarrow j + 6\overrightarrow k } \right| = \sqrt {18} .$$       If the coordinates of $$A$$ are $$\left( {3,\,2,\, - 2} \right),$$   then the coordinates of $$B$$ are :

A. $$\left( {1,\,0,\,10} \right)$$
B. $$\left( {1,\,0,\, - 10} \right)$$  
C. $$\left( { - 1,\,0,\,10} \right)$$
D. None of these
Answer :   $$\left( {1,\,0,\, - 10} \right)$$
Solution :
The equation of the sphere is
$$\left| {\overrightarrow r - 2\overrightarrow i - \overrightarrow j + 6\overrightarrow k } \right| = \sqrt {18} $$
$$ \Rightarrow $$  Its centre is at the point $$\left( {\overrightarrow r - 2\overrightarrow i - \overrightarrow j + 6\overrightarrow k } \right),$$      i.e., at $$\left( {2,\,1,\, - 6} \right).$$
Coordinates of $$A$$ are $$\left( {3,\,2,\, - 2} \right).$$
Let the coordinates of $$B$$ be $$\left( {\alpha ,\,\beta ,\,\gamma } \right).$$
$$\eqalign{ & {\text{Then, }}\frac{{3 + \alpha }}{2} = 2,\,\frac{{2 + \beta }}{2} = 1{\text{ and }}\frac{{ - 2 + \lambda }}{2} = - 6 \cr & \Rightarrow \alpha = 1,\,\beta = 0,\,\gamma = - 10 \cr} $$
Therefore, coordinates of $$B$$ are $$\left( {1,\,0,\, - 10} \right).$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section