Question

$$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ..... = $$

A. $$\frac{{{2^{n + 1}}}}{{n + 1}}$$
B. $$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$$
C. $$\frac{{{2^{n}}}}{{n + 1}}$$  
D. None of these
Answer :   $$\frac{{{2^{n}}}}{{n + 1}}$$
Solution :
Putting the value of $${C_0},{C_2},{C_4}.....,$$   we get
$$\eqalign{ & = 1 + \frac{{n\left( {n - 1} \right)}}{{3 \cdot 2!}} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{5 \cdot 4!}} + ..... \cr & = \frac{1}{{n + 1}}\left[ {\left( {n + 1} \right) + \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)}}{{3!}} + \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{5!}} + .....} \right] \cr & {\text{Put, }}n + 1 = N \cr & = \frac{1}{N}\left[ {N + \frac{{N\left( {N - 1} \right)\left( {N - 2} \right)}}{{3!}} + \frac{{N\left( {N - 1} \right)\left( {N - 2} \right)\left( {N - 3} \right)\left( {N - 4} \right)}}{{5!}} + .....} \right] \cr & = \frac{1}{N}\left\{ {^N{C_1} + {\,^N}{C_3} + {\,^N}{C_5} + .....} \right\} \cr & = \frac{1}{N}\left\{ {{2^{N - 1}}} \right\} = \frac{{{2^n}}}{{n + 1}}\,\,\,\,\left\{ {\because N = n + 1} \right\} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section