At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production $$P$$ w.r.t. additional number of workers $$x$$ is given by $$\frac{{dP}}{{dx}} = 100 - 12\sqrt x .$$ If the firm employs 25 more workers, then the new level of production of items is-
A.
$$2500$$
B.
$$3000$$
C.
$$3500$$
D.
$$4500$$
Answer :
$$3500$$
Solution :
Given, Rate of change is
$$\eqalign{
& \frac{{dP}}{{dx}} = 100 - 12\sqrt x \cr
& \Rightarrow dP = \left( {100 - 12\sqrt x } \right)dx \cr} $$
By integrating
$$\eqalign{
& \Rightarrow \int {dP = \int {\left( {100 - 12\sqrt x } \right)dx} } \cr
& P = 100x - 8{x^{\frac{3}{2}}} + C \cr} $$
Given, when $$x=0$$ then $$P =2000$$
$$ \Rightarrow C = 2000$$
Now when $$x= 25$$ then
$$\eqalign{
& P = 100 \times 25 - 8 \times {\left( {25} \right)^{\frac{3}{2}}} + 2000 \cr
& \Rightarrow P = 4500 - 1000 \cr
& \Rightarrow P = 3500 \cr} $$
Releted MCQ Question on Calculus >> Differential Equations
Releted Question 1
A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$ is-
If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$ and $$y\left( 0 \right) = - 1,$$ then $$y\left( 1 \right)$$ is equal to-