Solution :
Given circle : $${x^2} + {y^2} - 7x + 9y + 5 = 0$$
$$\therefore $$ Centre $$ = \left( {\frac{7}{2},\,\frac{{ - 9}}{2}} \right)$$
Radius $$ = \sqrt {\frac{{49}}{4} + \frac{{81}}{4} - 5} = \frac{{\sqrt {110} }}{2}$$

Since, $$\Delta ABC$$ is an equilateral
$$\eqalign{
& \therefore \,\angle MAL = {30^ \circ },\,\,\angle MLA = {90^ \circ } \cr
& {\text{Also, }}MA = \frac{{\sqrt {110} }}{2} \cr
& \therefore \,AL = MA\,\cos \,{30^ \circ } = \frac{{\sqrt {110} }}{2} \times \frac{{\sqrt 3 }}{2} = \frac{{\sqrt {330} }}{4} \cr
& \therefore {\text{ side of }}\Delta = 2.AL = \frac{{\sqrt {330} }}{2} \cr} $$
Area of equilateral $$\Delta = \frac{{\sqrt 3 }}{4}{a^2} = \frac{{\sqrt 3 }}{4} \times \frac{{330}}{4} = \frac{{165}}{8}\sqrt 3 {\text{ square units}}$$