Question

$$ABCD$$  is a square of length $$a,a \in N,a > 1.$$   Let $${L_1},{L_2},{L_3},.....$$    be points on $$BC$$  such that $$B{L_1} = {L_1}{L_2} = {L_2}{L_3} = ..... = 1$$       and $${M_1},{M_2},{M_3},.....$$    be point on $$CD$$  such that $$C{M_1} = {M_1}{M_2} = {M_2}{M_3} = ..... = 1.$$       Then $$\sum\limits_{n = 1}^{a - 1} {\left( {AL_n^2 + {L_n}M_n^2} \right)} $$    is equal to

A. $$\frac{1}{2}a{\left( {a - 1} \right)^2}$$
B. $$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$  
C. $$\frac{1}{2}\left( {a - 1} \right)\left( {2a - 1} \right)\left( {4a - 1} \right)$$
D. None of these
Answer :   $$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
Solution :
Sequences and Series mcq solution image
$$\eqalign{ & AL_1^2 + {L_1}M_1^2 = \left( {{a^2} + {1^2}} \right) + \left\{ {{{\left( {a - 1} \right)}^2} + {1^2}} \right\} \cr & AL_2^2 + {L_2}M_2^2 = \left( {{a^2} + {2^2}} \right) + \left\{ {{{\left( {a - 2} \right)}^2} + {2^2}} \right\} \cr & ........................................................ \cr & AL_{a - 1}^2 + {L_{a - 1}}M_{a - 1}^2 = {a^2} + {\left( {a - 1} \right)^2} + \left\{ {{1^2} + {{\left( {a - 1} \right)}^2}} \right\}. \cr} $$
∴ the required sum
$$\eqalign{ & = \left( {a - 1} \right){a^2} + \left\{ {{1^2} + {2^2} + ..... + {{\left( {a - 1} \right)}^2}} \right\} + 2\left\{ {{1^2} + {2^2} + ..... + {{\left( {a - 1} \right)}^2}} \right\} \cr & = \left( {a - 1} \right){a^2} + 3 \cdot \frac{{\left( {a - 1} \right)a\left( {2a - 1} \right)}}{6} = a\left( {a - 1} \right)\left\{ {a + \frac{{2a - 1}}{2}} \right\}. \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section