Question

A vector has components $$2p$$  and $$1$$ with respect to a rectangular cartesian system. The axes are rotated through an angle $$\alpha $$ about the origin in the anticlockwise sense. If the vector has components $$p + 1$$  and $$1$$ with respect to the new system then :

A. $$p = 1,\, - \frac{1}{3}$$  
B. $$p = 0$$
C. $$p = - 1,\,\frac{1}{3}$$
D. $$p = 1,\, - 1$$
Answer :   $$p = 1,\, - \frac{1}{3}$$
Solution :
Here, $$\overrightarrow a = 2p\overrightarrow i + \overrightarrow j .$$   After rotation, let the vector be $$\overrightarrow b $$ and let the unit vectors along the new axes be $$\overrightarrow {i'} ,\,\overrightarrow {j'} .$$
Then $$\overrightarrow b = \left( {p + 1} \right)\overrightarrow {i'} + \overrightarrow {j'} .$$     But the magnitude of a vector does not change with rotation of axes.
$$\eqalign{ & \therefore \,\,\,\overrightarrow {\left| a \right|} = \left| {\overrightarrow b } \right| \cr & \Rightarrow \sqrt {{{\left( {2p} \right)}^2} + {1^2}} = \sqrt {{{\left( {p + 1} \right)}^2} + {1^2}} \cr & \Rightarrow 4{p^2} + 1 = {p^2} + 2p + 2{\text{ or }}3{p^2} - 2p - 1 = 0 \cr & \therefore \,\,p = 1,\, - \frac{1}{3} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section