Question

A vector $$\overrightarrow a = \left( {x,\,y,\,z} \right)$$    of length $$2\sqrt 3 $$  which makes equal angles with the vectors $$\overrightarrow b = \left( {y,\, - 2z,\,3x} \right)$$    and $$\overrightarrow c = \left( {2z,\,3x,\, - y} \right)$$    and is perpendicular to $$\overrightarrow d = \left( {1,\, - 1,\,2} \right)$$    and makes an obtuse angle with $$y$$-axis is :

A. $$\left( { - 2,\,2,\,2} \right)$$
B. $$\left( {1,\,1,\,\sqrt {10} } \right)$$
C. $$\left( {2,\, - 2,\, - 2} \right)$$  
D. none of these
Answer :   $$\left( {2,\, - 2,\, - 2} \right)$$
Solution :
Since, $$\overrightarrow a $$ is $$ \bot $$ to $$\overrightarrow d ,$$ so $$x - y + 2z = 0......\left( 1 \right)$$
Moreover, $$\left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right|,$$   so $$\overrightarrow a .\overrightarrow b = \overrightarrow a .\overrightarrow c $$
as $$\overrightarrow a $$ makes equal angles with $$\overrightarrow b $$ and $$\overrightarrow c .$$ Thus
$$\eqalign{ & xy - 2yz + 3xz = 2xz + 3xy - yz \cr & \Rightarrow xz - 2xy - yz = 0......\left( 2 \right) \cr & {\text{Also, }}{x^2} + {y^2} + {z^2} = 12......\left( 3 \right) \cr & {\text{and }}y < 0 \cr} $$
Put the value of $$y$$ from equation $$\left( 1 \right)$$ in equation $$\left( 2 \right),$$
we get, $${x^2} + 2xz + {z^2} = 0\,;$$
So, $$x = - z{\text{ and }}y = z$$
Again put these values in equation $$\left( 3 \right),$$
we get $${z^2} = 4 \Rightarrow z = \pm 2$$
But $$y < 0$$  and $$y = z$$
Hence, $$z = - 2 = y{\text{ and }}x = 2$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section