Question

A variable plane which remains at a constant distance $$3p$$  from the origin cut the coordinate axes at $$A,\,B$$  and $$C$$. The locus of the centroid of triangle $$ABC$$  is :

A. $${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}} = {p^{ - 1}}$$
B. $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$  
C. $$x + y + z = p$$
D. $${x^2} + {y^2} + {z^2} = {p^2}$$
Answer :   $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$
Solution :
Let equation of the variable plane be
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( 1 \right)$$
This meets the coordinate axes at $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$     and $$C\left( {0,\,0,\,c} \right).$$
Let $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   be the centroid of the $$\Delta ABC.$$   Then
$$\eqalign{ & \alpha = \frac{{a + 0 + 0}}{3},\,\beta = \frac{{0 + b + 0}}{3},\,\gamma = \frac{{0 + 0 + c}}{3} \cr & \therefore \,a = 3\alpha ,\,b = 3\beta ,\,c = 3\gamma ......\left( 2 \right) \cr} $$
Plane $$\left( 1 \right)$$ is at constant distance $$3p$$  from the origin, so
$$\eqalign{ & 3p = \frac{{\left| {\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{b}} \right)}^2} + {{\left( {\frac{1}{c}} \right)}^2}} }} \cr & \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{9{p^2}}}......\left( 3 \right) \cr} $$
From $$\left( 2 \right)$$ and $$\left( 3 \right),$$ we get
$$\eqalign{ & \frac{1}{{9{\alpha ^2}}} + \frac{1}{{9{\beta ^2}}} + \frac{1}{{9{\gamma ^2}}} = \frac{1}{{9{p^2}}} \cr & \Rightarrow {\alpha ^{ - 2}} + {\beta ^{ - 2}} + {\gamma ^{ - 2}} = {p^{ - 2}} \cr} $$
Generalizing $$\alpha ,\,\beta ,\,\gamma ,$$   locus of centroid $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   is $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section