Question

A variable plane at a distance of $$1$$ unit from the origin cuts the coordinate axes at $$A,\,B$$  and $$C.$$ If the centroid $$D\left( {x,\,y,\,z} \right)$$   satisfies the relation $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = k$$     then the value of $$k$$ is :

A. $$3$$
B. $$1$$
C. $$\frac{1}{3}$$
D. $$9$$  
Answer :   $$9$$
Solution :
The plane is $$lx + my + nz = 1$$    where $${l^2} + {m^2} + {n^2} = 1.$$    It cuts axes at $$\left( {\frac{1}{l},\,0,\,0} \right),\,\left( {0,\,\frac{1}{m},\,0} \right),\,\left( {0,\,0,\,\frac{1}{n}} \right).$$
$$\therefore $$  the centroid $$ = \left( {\frac{1}{{3l}},\,\frac{1}{{3m}},\,\frac{1}{{3n}}} \right).$$     It satisfies $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k\,\,\, \Rightarrow 9\left( {{l^2} + {m^2} + {n^2}} \right) = k\,\,\, \Rightarrow 9 = k.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section