Question

A variable plane at a distance of $$1$$ unit from the origin cuts the coordinate axes at $$A,\,B$$  and $$C$$. If the centroid $$D\left( {x,\,y,\,z} \right)$$   of triangle $$ABC$$  satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k,$$     then the value of $$k$$ is :

A. $$3$$
B. $$1$$
C. $$\frac{1}{3}$$
D. $$9$$  
Answer :   $$9$$
Solution :
Let the equation of variable plane be $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
Which meets the axes at $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$     and $$C\left( {0,\,0,\,c} \right)$$
The centroid of $$\Delta ABC$$   is $$\left( {\frac{a}{3},\,\frac{b}{3},\,\frac{c}{3}} \right)$$   and it satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k.$$
Thus,
$$\eqalign{ & \frac{9}{{{a^2}}} + \frac{9}{{{b^2}}} + \frac{9}{{{c^2}}} = k \cr & {\text{or, }}\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{k}{9}......\left( {\text{i}} \right) \cr} $$
Also it is given that the distance of the plane $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$   from $$\left( {0,\,0,\,0} \right)$$   is $$1$$ unit. Therefore,
$$\eqalign{ & \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = 1 \cr & {\text{or, }}\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = 1......\left( {{\text{ii}}} \right) \cr} $$
From $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right)$$, we get $$\frac{k}{9} = 1,\,{\text{i}}{\text{.e}}{\text{., }}k = 9$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section