Solution :
We have $$AC = \sec \,\theta ,\,AG = 8$$
$$\therefore \,CG = 8 - \sec \,\theta $$ ($$C$$ being the peg)

$$\eqalign{
& {\text{But }}u = CG\,\sin \,\theta = \left( {8 - \sec \,\theta } \right)\sin \,\theta \cr
& u = 8\,\sin \,\theta - \tan \,\theta \cr
& \frac{{du}}{{d\theta }} = 8\,\cos \,\theta - {\sec ^2}\theta , \cr
& \frac{{{d^2}u}}{{d{\theta ^2}}} = - 8\,\sin \,\theta - 2\,{\sec ^2}\theta \,\tan \,\theta \cr
& \frac{{du}}{{d\theta }} = 0,\,{\text{when }}{\cos ^3}\theta = \frac{1}{8},\,\cos \,\theta = \frac{1}{2}, \cr
& \frac{{{d^2}u}}{{d{\theta ^2}}} > 0\left( {{\text{at }}\theta = {{60}^ \circ }} \right), \cr
& \therefore \,\theta = {60^ \circ } \cr} $$