Question

A quadratic equation whose roots are $${\left( {\frac{\gamma }{\alpha }} \right)^2}$$ and $${\left( {\frac{\beta }{\alpha }} \right)^2},$$  where $$\alpha ,\beta ,\gamma $$   are the roots of $${x^3} + 27 = 0,$$   is

A. $${x^2} - x + 1 = 0$$
B. $${x^2} + 3x + 9 = 0$$
C. $${x^2} + x + 1 = 0$$  
D. $${x^2} - 3x + 9 = 0$$
Answer :   $${x^2} + x + 1 = 0$$
Solution :
$$\eqalign{ & {x^3} + 27 = 0 \cr & \Rightarrow \,\,x = {\left( { - 27} \right)^{\frac{1}{3}}} = - 3, - 3\omega , - 3{\omega ^2} \cr & \therefore \,\,\frac{\gamma }{\alpha } = {\omega ^2},\frac{\beta }{\alpha } = \omega \,\,\,{\text{or, }}\frac{\gamma }{\alpha } = \frac{1}{\omega },\frac{\beta }{\alpha } = \omega \,\,{\text{or, }}\frac{\gamma }{\alpha } = \frac{1}{{{\omega ^2}}},\frac{\beta }{\alpha } = \frac{1}{\omega }. \cr} $$
In all the cases, $$\frac{\gamma }{\alpha },\frac{\beta }{\alpha }$$  are $$\omega \,\,{\text{or }}{\omega ^2}.$$
∴ the equation is $${x^2} - \left( {\omega + {\omega ^2}} \right)x + \omega \cdot {\omega ^2} = 0.$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section