Question

A point on the hypotenuse of a triangle is at distance $$a$$ and $$b$$ from the sides of the triangle. Then the minimum length of the hypotenuse is :

A. $${\left( {{a^{\frac{3}{2}}} + {b^{\frac{3}{2}}}} \right)^{\frac{2}{3}}}$$
B. $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}}$$  
C. $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^3}$$
D. $${\left( {{a^{\frac{3}{2}}} + {b^{\frac{3}{2}}}} \right)^3}$$
Answer :   $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}}$$
Solution :
Application of Derivatives mcq solution image
$$\eqalign{ & {\text{From the figure,}} \cr & PC = b\,{\text{cosec}}\,\theta {\text{ and }}AP = a\,\sec \,\theta \cr & AC = PC + AP \cr & {\text{or }}AC = b\,{\text{cosec}}\,\theta {\text{ }} + a\,\sec \,\theta ......\left( 1 \right) \cr & \therefore \,\frac{{d\left( {AC} \right)}}{{d\theta }} = - b\,{\text{cosec}}\,\theta \,\cot \,\theta + a\,\sec \,\theta \,\tan \,\theta \cr & {\text{For minimum length, }}\frac{{d\left( {AC} \right)}}{{d\theta }} = 0 \cr & {\text{or }}a\,\sec \,\theta \,\tan \,\theta = b\,{\text{cosec}}\,\theta \,\cot \,\theta \cr & {\text{or }}\tan \,\theta = {\left( {\frac{b}{a}} \right)^{\frac{1}{3}}} \cr & \therefore \,\,\sin \,\theta = \frac{{{{\left( b \right)}^{\frac{1}{3}}}}}{{\sqrt {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} }}{\text{ and cos}}\,\theta = \frac{{{{\left( a \right)}^{\frac{1}{3}}}}}{{\sqrt {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} }}.....\left( 2 \right) \cr & {\text{Also}},{\text{ }}\theta \, \in \left( {0,\,\frac{\pi }{2}} \right) \cr & \mathop {\lim }\limits_{\theta \to 0} \left( {a\,\sec \,\theta + b\,{\text{cosec}}\,\theta } \right) \to \infty \cr & {\text{Therefore, }}\theta = {\tan ^{ - 1}}{\left( {\frac{b}{a}} \right)^{\frac{1}{3}}}{\text{ is a point of minima}}{\text{.}} \cr & {\text{For this value of}}\,\theta , \cr & AC = \frac{{b\sqrt {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} }}{{{b^{\frac{1}{3}}}}} + \frac{{a\sqrt {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} }}{{{a^{\frac{1}{3}}}}}\,\,\,\,\,\left[ {{\text{Using }}\left( 1 \right){\text{ and }}\left( 2 \right)} \right] \cr & \,\,\,\,\,\,\,\,\,\, = \sqrt {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \left( {{b^{\frac{2}{3}}} + {a^{\frac{2}{3}}}} \right) \cr & \,\,\,\,\,\,\,\,\,\, = {\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}} \cr} $$
Hence, the minimum length of the hypotenuse is $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}}.$$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section