Solution :
Let $$h$$ be the height of tree $$PQ$$ and breadth of river $$PS$$ be $$x \,ft.$$
Angle of elevation subtended by a tree is $${60^ \circ }.$$
Also, when he retreats 20 feet, the angle becomes $${30^ \circ }.$$

$$\eqalign{
& {\text{Also, in }}\,\Delta \,PQS,\tan {60^ \circ } = \frac{h}{x} \cr
& \Rightarrow h = \sqrt 3 x \cr
& {\text{and in }}\,\Delta \,PQR,\tan {30^ \circ } = \frac{h}{{x + 20}} \cr
& \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{h}{{x + 20}} \cr
& \Rightarrow x + 20 = \sqrt 3 h \cr
& \Rightarrow x + 20 = 3x\,\left( {{\text{By putting value of }}h} \right) \cr
& \Rightarrow 2x = 20 \cr
& \Rightarrow x = 10 \cr} $$
Hence breadth of river is $$10\,ft.$$