Question

A mirror and a source of light are situated at the origin $$O$$ and at a point on $$OX$$  respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $$1,\, – 1,\, 1,$$   then direction cosines of the reflected rays are :

A. $$\frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
B. $$ - \frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
C. $$ - \frac{1}{3},\,\frac{2}{3},\, - \frac{2}{3}$$
D. $$ - \frac{1}{3},\, - \frac{2}{3},\,\frac{2}{3}$$  
Answer :   $$ - \frac{1}{3},\, - \frac{2}{3},\,\frac{2}{3}$$
Solution :
Three Dimensional Geometry mcq solution image
Let the ray of light comes along $$x$$-axis and strikes the mirror at the origin.
Direction cosines of normal are
$$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}{\text{ so, }}\cos \frac{\theta }{2} = \frac{1}{{\sqrt 3 }}$$
Let the reflected ray has direction cosines $$l,\,m,\,n$$   then
$$\eqalign{ & \frac{{l + 1}}{{2\,\cos \frac{\theta }{2}}} = \frac{1}{{\sqrt 3 }} \Rightarrow l = \frac{2}{3} - 1 = - \frac{1}{3} \cr & \frac{{m + 0}}{{2\,\cos \frac{\theta }{2}}} = - \frac{1}{{\sqrt 3 }} \Rightarrow m = - \frac{2}{3} \cr & \frac{{n + 0}}{{2\,\cos \frac{\theta }{2}}} = \frac{1}{{\sqrt 3 }} \Rightarrow n = \frac{2}{3} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section