Question

A line with direction cosines proportional to $$2,\,1,\,2$$   meets each of the lines $$x=y+a=z$$    and $$x+a=2y=2z.$$    The co-ordinates of each of the points of intersection are given by :

A. $$\left( {2a,\,3a,\,3a} \right),\,\left( {2a,\,a,\,a} \right)$$
B. $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$  
C. $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,2a} \right)$$
D. $$\left( {3a,\,3a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
Answer :   $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
Solution :
Let a point on the line $$x=y+a=z$$    is $$\left( {\lambda ,\,\lambda - a,\,\lambda } \right)$$   and a point on the line $$x+a=2y=2z$$    is $$\left( {\mu - a,\,\frac{\mu }{2},\,\frac{\mu }{2}} \right),$$    then direction ratio of the line joining these points are $$\lambda - \mu + a,\,\lambda - a - \frac{\mu }{2},\,\lambda - \frac{\mu }{2}$$
If it respresents the required line, then
$$\frac{{\lambda - \mu + a}}{2} = \frac{{\lambda - a - \frac{\mu }{2}}}{1} = \frac{{\lambda - \frac{\mu }{2}}}{2}$$
on solving we get $$\lambda = 3a,\,\,\mu = 2a$$
$$\therefore $$ The required points of intersection are
$$\left( {3a,\,3a - a,\,3a} \right)$$    and $$\left( {2a - a,\,\frac{{2a}}{2},\,\frac{{2a}}{2}} \right)$$
or $$\left( {3a,\,2a,\,3a} \right)$$    and $$\left( {a,\,a,\,a} \right)$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section