Question

A line is drawn through a fixed point $$P\left( {\alpha ,\,\beta } \right)$$   to cut the circle $${x^2} + {y^2} = {a^2}$$   at $$A$$ and $$B,$$ then $$PA.PB$$   is equal to :

A. $${\alpha ^2} + {\beta ^2}$$
B. $${\alpha ^2} + {\beta ^2} - {a^2}$$  
C. $${a^2}$$
D. $${\alpha ^2} + {\beta ^2} + {a^2}$$
Answer :   $${\alpha ^2} + {\beta ^2} - {a^2}$$
Solution :
Any point on the line at a distance $$r$$ from the point $$P\left( {\alpha ,\,\beta } \right)$$   is $$\left( {\alpha + r\,\cos \,\theta ,\,\beta + r\,\sin \,\theta } \right)$$
If this point lies on $${x^2} + {y^2} = {a^2},$$   then
$$\eqalign{ & {\alpha ^2} + {r^2}{\cos ^2}\theta + 2\alpha r\,\cos \,\theta + {\beta ^2} + {r^2}{\sin ^2}\theta + 2\beta r\,\sin \,\theta = {a^2} \cr & \Rightarrow {r^2} + 2r\left( {\alpha \,\cos \,\theta + \beta \,\sin \,\theta } \right) + {\alpha ^2} + {\beta ^2} = {a^2} \cr & \Rightarrow {r^2} + 2r\left( {\alpha \,\cos \,\theta + \beta \,\sin \,\theta } \right) + {\alpha ^2} + {\beta ^2} - {a^2} = 0 \cr} $$
Now, if $$PA = {r_1}$$   and $$PB = {r_2},$$   then $${r_1}$$ and $${r_2}$$ must be roots of this equation.
$$\therefore \,PA.PB = {r_1}.{r_2} = {\alpha ^2} + {\beta ^2} - {a^2}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section