Question

$${\left( {\overrightarrow a \times \overrightarrow i } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow j } \right)^2} + {\left( {\overrightarrow a \times \overrightarrow k } \right)^2}$$       is equal to :

A. $${\overrightarrow a ^2}$$
B. $$3{\overrightarrow a ^2}$$
C. $$2{\overrightarrow a ^2}$$  
D. none of these
Answer :   $$2{\overrightarrow a ^2}$$
Solution :
\[{\left( {\overrightarrow a \times \overrightarrow i } \right)^2} = \left( {\overrightarrow a \times \overrightarrow i } \right).\left( {\overrightarrow a \times \overrightarrow i } \right) = \left| \begin{array}{l} \overrightarrow a .\overrightarrow a \,\,\,\,\,\overrightarrow a .\overrightarrow i \\ \overrightarrow i .\overrightarrow a \,\,\,\,\,\,\overrightarrow i .\overrightarrow i \end{array} \right| = {\overrightarrow a ^2} - {\left( {\overrightarrow a .\overrightarrow i } \right)^2}\]
$$\eqalign{ & {\text{Similarly, }}{\left( {\overrightarrow a \times \overrightarrow j } \right)^2} = {\overrightarrow a ^2} - {\left( {\overrightarrow a .\overrightarrow j } \right)^2},{\text{ and}}\,\,{\left( {\overrightarrow a \times \overrightarrow k } \right)^2} = {\overrightarrow a ^2} - {\left( {\overrightarrow a .k} \right)^2} \cr & \therefore {\text{ the expression}} = 3{\overrightarrow a ^2} - \left\{ {{{\left( {\overrightarrow a .\overrightarrow i } \right)}^2} + {{\left( {\overrightarrow a .\overrightarrow j } \right)}^2} + {{\left( {\overrightarrow a .\overrightarrow k } \right)}^2}} \right\} \cr & = 3{\overrightarrow a ^2} - {\overrightarrow a ^2} \cr & = 2{\overrightarrow a ^2} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section