Question

A hyperbola having the transverse axis of length $$2\,\sin \,\theta ,$$   is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$    Then its equation is :

A. $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$  
B. $${x^2}{\sec ^2}\theta - {y^2}{\text{cose}}{{\text{c}}^2}\theta = 1$$
C. $${x^2}{\sin ^2}\theta - {y^2}{\cos ^2}\theta = 1$$
D. $${x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta = 1$$
Answer :   $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$
Solution :
Equation of the ellipse is $$3{x^2} + 4{y^2} = 12$$
$$ \Rightarrow \frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1......\left( 1 \right)$$
Eccentricity $${e_1} = \sqrt {1 - \frac{3}{4}} = \frac{1}{2}$$
So, the foci of ellipse are $$\left( {1,\,0} \right)$$  and $$\left( { - 1,\,0} \right)$$
Let the equation of the required hyperbola be
$$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1......\left( 2 \right)$$
Given $$2a = 2\,\sin \,\theta \Rightarrow a = \sin \,\theta $$
Since the ellipse $$\left( 1 \right)$$ and the hyperbola $$\left( 2 \right)$$ are confocal, so the foci of hyperbola are $$\left( {1,\,0} \right)$$  and $$\left( { - 1,\,0} \right)$$  too.
If the eccentricity, of hyperbola be $${e_2}$$ then
$$\eqalign{ & a{e_2} = 1 \Rightarrow \sin \,\theta {e_2} = 1 \Rightarrow {e_2} = {\text{cosec}}\,\theta \cr & \therefore \,{b^2} = {a^2}\left( {e_2^2 - 1} \right) = {\sin ^2}\theta \left( {{\text{cose}}{{\text{c}}^2}\theta - 1} \right) = {\cos ^2}\theta \cr} $$
$$\therefore $$  Required equation of the hyperbola is
$$\frac{{{x^2}}}{{{{\sin }^2}\theta }} - \frac{{{y^2}}}{{{{\cos }^2}\theta }} = 1 \Rightarrow {x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section