Question

A function $$y = f\left( x \right)$$   satisfies the differential equation $$\frac{{dy}}{{dx}} - y = \cos \,x - \sin \,x$$     with initial condition that $$y$$ is bounded when $$x \to \infty .$$  The area enclosed by $$y = f\left( x \right),\,y = \cos \,x$$     and the $$y$$-axis is :

A. $$\sqrt 2 - 1$$  
B. $$\sqrt 2 $$
C. $$1$$
D. $$\frac{1}{{\sqrt 2 }}$$
Answer :   $$\sqrt 2 - 1$$
Solution :
$$\eqalign{ & {\text{I}}{\text{.F}}{\text{.}} = {e^{ - x}} \cr & \therefore \,y{e^{ - x}} = \int {{e^{ - x}}} \left( {\cos \,x - \sin \,x} \right)dx \cr & {\text{Put }} - x = t \cr} $$
Differential Equations mcq solution image
$$\eqalign{ & = - \int {{e^t}\left( {\cos \,t + \sin \,t} \right)dt} \cr & = - {e^t}\sin \,t + c \cr & y{e^{ - x}} = {e^{ - x}}\sin \,x + c \cr} $$
Since, $$y$$ is bounded when $$x \to \infty \Rightarrow c = 0$$
$$\eqalign{ & \therefore \,y = \sin \,x \cr & {\text{Area}} = \int_0^{\frac{\pi }{4}} {\left( {\cos \,x - \sin \,x} \right)dx = \sqrt 2 - 1} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section