Question

A function $$y = f\left( x \right)$$   satisfies the condition $$f'\left( x \right)\sin \,x + f\left( x \right)\cos \,x = 1,\,f\left( x \right)$$       being bounded when $$x \to 0.$$
If $$l = \int_0^{\frac{\pi }{2}} {f\left( x \right)dx,} $$     then :

A. $$\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4}$$  
B. $$\frac{\pi }{4} < l < \frac{{{\pi ^2}}}{2}$$
C. $$1 < l < \frac{\pi }{2}$$
D. $$0 < l < 1$$
Answer :   $$\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4}$$
Solution :
Differential Equations mcq solution image
$$\eqalign{ & \sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 1 \cr & \frac{{dy}}{{dx}} + y\,\cot \,x = {\text{cosec}}\,x \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\cot \,x\,dx} }} = {e^{\ln \left( {\sin \,x} \right)}} = \sin \,x \cr & y\,\sin \,x = \int {{\text{cosec}}\,x.\sin \,x\,dx = x + C} \cr & {\text{If }}x = 0,\,y{\text{ is finite}} \cr & \therefore \,C = 0 \cr & y = x\left( {{\text{cosec}}\,x} \right) = \frac{x}{{\sin \,x}} \cr & {\text{Now, }}l < \frac{{{\pi ^2}}}{4}{\text{ and }}l > \frac{\pi }{2} \cr & {\text{Hence, }}\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section