Question

A function $$f\left( x \right)$$  is defined as below
$$f\left( x \right) = \frac{{\cos \left( {\sin \,x} \right) - \cos \,x}}{{{x^2}}},\,x \ne 0{\text{ and }}f\left( 0 \right) = a$$
$$f\left( x \right)$$  is continuous at $$x=0$$  if $$a$$ equals :

A. $$0$$  
B. $$4$$
C. $$5$$
D. 6
Answer :   $$0$$
Solution :
$$\eqalign{ & {\text{RH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\cos \left\{ {\sin \left( {0 + h} \right)} \right\} - \cos \left( {0 + h} \right)}}{{{{\left( {0 + h} \right)}^2}}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\cos \,\sin \,h - \cos \,h}}{{{h^2}}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - \sin \left( {\sin \,h} \right) \times \cos \,h + \sin \,h}}{{2h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - \cos \left( {\sin \,h} \right) \times {{\cos }^2}h + \sin \left( {\sin \,h} \right) \times \sin \,h + \cos \,h}}{2} \cr & = 0 \cr} $$
Similarly, LH limit $$=0.$$
As $$f\left( x \right)$$  is continuous at $$x = 0,\,f\left( 0 \right) = 0$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section