Question
A force $$\overrightarrow F = 3\hat i + 4\hat j - 3\hat k$$ is applied at the point $$P,$$ whose position vector is $$\overrightarrow r = 2\hat i - 2\hat j - 3\hat k.$$ What is the magnitude of the moment of the force about the origin ?
A.
$$23$$ units
B.
$$19$$ units
C.
$$18$$ units
D.
$$21$$ units
Answer :
$$23$$ units
Solution :
Moment of force, $$m = \overrightarrow r \times \overrightarrow F $$
\[m = \left| \begin{array}{l}
\hat i\,\,\,\,\,\,\hat j\,\,\,\,\,\,\hat k\\
2\,\,\, - 2\,\,\, - 3\\
3\,\,\,\,\,\,4\,\,\,\, - 3
\end{array} \right|\]
$$\eqalign{
& = \hat i\left( {6 + 12} \right) - \hat j\left( { - 6 + 9} \right) + \hat k\left( {8 + 6} \right) \cr
& = 18\hat i - 3\hat j + 14\hat k \cr
& = \sqrt {{{\left( {18} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( {14} \right)}^2}} \cr
& = \sqrt {529} \cr
& = 23{\text{ units}} \cr} $$